
Generating Fast Indulgent Algorithms

Dan Alistarh1, Seth Gilbert2, Rachid Guerraoui1, and Corentin Travers3

1 EPFL, Switzerland
2 National University of Singapore
3 Université de Bordeaux 1, France

Abstract. Synchronous distributed algorithms are easier to design and prove cor-
rect than algorithms that tolerate asynchrony. Yet, in the real world, networks
experience asynchrony and other timing anomalies. In this paper, we address
the question of how to efficiently transform an algorithm that relies on syn-
chronization into an algorithm that tolerates asynchronous executions. We intro-
duce a transformation technique from synchronous algorithms to indulgent algo-
rithms [1], which induces only a constant overhead in terms of time complexity
in well-behaved executions.
Our technique is based on a new abstraction we call an asynchrony detector,
which the participating processes implement collectively. The resulting transfor-
mation works for a large class of colorless tasks, including consensus and set
agreement. Interestingly, we also show that our technique is relevant for colored
tasks, by applying it to the renaming problem, to obtain the first indulgent renam-
ing algorithm.

1 Introduction

The feasibility and complexity of distributed tasks has been thoroughly studied both
in the synchronous and asynchronous models. To better capture the properties of real-
world systems, Dwork, Lynch, and Stockmeyer [2] proposed the partially synchronous
model, in which the distributed system may alternate between synchronous to asyn-
chronous periods. This line of research inspired the introduction of indulgent algo-
rithms [1], i.e. algorithms that guarantee correctness and efficiency when the system
is synchronous, and maintain safety even when the system is asynchronous. Several
indulgent algorithms have been designed for specific distributed problems, such as con-
sensus (e.g., [3, 4]). However, designing and proving correctness of such algorithms
is usually a difficult task, especially if the algorithm has to provide good performance
guarantees.
Contribution. In this paper, we introduce a general transformation technique from syn-
chronous algorithms to indulgent algorithms, which induces only a constant overhead
in terms of time complexity. Our technique is based on a new primitive called an asyn-
chrony detector, which identifies periods of asynchrony in a fault-prone asynchronous
system. We showcase the resulting transformation to obtain indulgent algorithms for
a large class of colorless agreement tasks, including consensus and set agreement. We
also apply our transformation to the distinct class of colored tasks, to obtain the first
indulgent renaming algorithm.

Detecting Asynchrony. Central to our technique is a new abstraction, called an asyn-
chrony detector, which we design as a distributed service for detecting periods of asyn-
chrony. The service detects asynchrony both at a local level, by determining whether the
view of a process is consistent with a synchronous execution, and at a global level, by
determining whether the collective view of a set of processes could have been observed
in a synchronous execution.

We present an implementation of an asynchrony detector, based on the idea that each
process maintains a log of the messages sent and received, which it exchanges with
other processes. This creates a view of the system for every process, which we use to
detect asynchronous executions.

The Transformation Technique. Based on this abstraction, we introduce a general
technique allowing synchronous algorithms to tolerate asynchrony, while maintaining
time efficiency in well-behaved executions. The main idea behind the transformation
is the following: as long as the asynchrony detector signals a synchronous execution,
processes run the synchronous algorithm. If the system is well behaved, then the syn-
chronous algorithm yields an output, on which the process decides. Otherwise, if the
detector notices asynchrony, we revert to an existing asynchronous backup algorithm
with weaker termination and performance guarantees.

Transforming Agreement Algorithms. We first showcase the technique by trans-
forming algorithms for a large class of agreement tasks, called colorless tasks, which
includes consensus and set agreement. Intuitively, a colorless task allows processes to
adopt each other’s output values without violating the task specification, while ensuring
that every value returned has been proposed by a process.

We show that any synchronous algorithm solving a colorless task can be made indulgent
at the cost of two rounds of communication. For example, if a synchronous algorithm
solves synchronous consensus in t+1 rounds, where t is the maximum number of crash
failures (i.e. the algorithm it is time-optimal), then the resulting indulgent algorithm will
solve consensus in t + 3 rounds if the system is initially synchronous, or will revert to
a safe backup, e.g. Paxos [4, 5] or ASAP [6], otherwise.

The crux of the technique is the hand-off procedure: we ensure that, if a process de-
cides using the synchronous algorithm, any other process either decides or adopts a
state which is consistent with the decision. In this second case, we show that a process
can recover a consistent state by examining the views of other processes. The validity
property will ensure that the backup protocol generates a valid output configuration.

Transforming Renaming Algorithms. We also apply our technique to the renaming
problem [7], and obtain the first indulgent renaming algorithm. Starting from the syn-
chronous protocol of [8], our protocol renames in a tight namespace of N names and
terminates in (logN + 3) rounds, in synchronous executions. In asynchronous execu-
tions, the protocol renames in a namespace of size N + t.

Roadmap. In Section 2, we present the model, while Section 3 presents an overview
of related work. We define asynchrony detectors in Section 4. Section 5 presents the
transformation for colorless agreement tasks, while Section 6 applies it to the renaming
problem. In Section 7 we discuss our results. Due to space limitations, the proofs of
some basic results are omitted, and we present detailed sketches for some of the proofs.

2 Model

We consider an eventually synchronous system withN processesΠ = {p1, p2, . . . , pN},
in which t < N/2 processes may fail by crashing. Processes communicate via message-
passing in rounds, which we model much as in [3, 9, 10]. In particular, time is divided
into rounds, which are synchronized. However, the system is asynchronous, i.e. there is
no guarantee that a message sent in a round is also delivered in the same round. We do
assume that processes receive at least N − t messages in every round, and that a pro-
cess always receives its own message in every round. Also, we assume that there exists
a global stabilization time GST ≥ 0 after which the system becomes synchronous, i.e.
every message is delivered in the same round in which it was sent. We denote such a
system by ES(N, t).

Although indulgent algorithms are designed to work in this asynchronous setting,
they are optimized for the case in which the system is initially synchronous, i.e. when
GST = 0. We denote the synchronous message-passing model with t < N failures by
S(N, t). In case the system stabilizes at a later point in the execution, i.e. 0 < GST <
∞, then the algorithms are still guaranteed to terminate, although they might be less
efficient. If the system never stabilizes, i.e. GST =∞, indulgent algorithms might not
terminate, although they always maintain safety.

In the following, we say that an execution is synchronous if every message sent by
a correct process in the course of the execution is delivered in the same round in which
it was sent. Alternatively, if process pi receives a message m from process pj in round
r ≥ 2, then every process received all messages sent by process pj in all rounds r′ < r.
The view of a process p at a round r is given by the messages that p received at round
r and in all previous rounds. We say that the view of process p is synchronous at round
r if there exists an r-round synchronous execution which is indistinguishable from p’s
view at round r.

3 Related Work

Starting with seminal work by Dwork, Lynch and Stockmeyer [2], a variety of different
models have been introduced to express relaxations of the standard asynchronous model
of computation. These include failure detectors [11], round-by-round fault detectors
(RRFD) [12], and, more recently, indulgent algorithms [1].

In [3, 9], Guerraoui and Dutta address the complexity of indulgent consensus in the
presence of an eventually perfect failure detector. They prove a tight lower bound of
t + 2 rounds on the time complexity of the problem, even in synchronous runs, thus
proving that there is an inherent price to tolerating asynchronous executions. Our ap-
proach is more general than that of this reference, since we transform a whole class of
synchronous distributed algorithms, solving various tasks, into their indulgent counter-
parts. On the other hand, since our technique induces a delay of two rounds of commu-
nication over the synchronous algorithm, in the case of consensus, we miss the lower
bound of t+ 2 rounds by one round.

Recent work studied the complexity of agreement problems, such as consensus [6]
and k-set agreement [10], if the system becomes synchronous after an unknown stabi-
lization time GST . In [6], the authors present a consensus algorithm that terminates in

f + 2 rounds after GST , where f is the number of failures in the system. In [10], the
authors consider k-set agreement in the same setting, proving that bt/kc + 4 rounds
after GST are enough for k-set agreement, and that at least bt/kc + 2 rounds are re-
quired. The algorithms from these references work with the same time complexity in
the indulgent setting, where GST = 0. On the other hand, the transformation in the
current paper does not immediately yield algorithms that would work in a window of
synchrony. From the point of view of the technique, references [6, 10] also use the idea
of “detecting asynchrony” as part of the algorithms, although this technique has been
generalized in the current work to address a large family of distributed tasks.

Reference [13] considered a setting in which failures stop after GST , in which
case 3 rounds of communication are necessary and sufficient. Leader-based, Paxos-like
algorithms, e.g. [4, 5], form another class of algorithms that tolerate asynchrony, and
can also be seen as indulgent algorithms.

A precise definition of colorless tasks is given in [14]. Note that, in this paper, we
augment their definition to include the standard validity property (see Section 5).

4 Asynchrony Detectors

An asynchrony detector is a distributed service that detects periods of asynchrony in an
asynchronous system that may be initially synchronous. The service returns a YES/NO
indication at the end of every round, and has the property that processes which receive
YES at some round share a synchronous execution prefix. Next, we make this definition
precise.

Definition 1 (Asynchrony Detector). Let d be a positive integer. A d-delay asynchrony
detector in ES(N, t) is a distributed service that, in every round r, returns either YES
or NO, at each process. The detector ensures the following properties.

– (Local detection) If process p receives YES at round r, then there exists an r-round
synchronous execution in which p has the same view as its current view at round r.

– (Global detection) For all processes that receive YES in round r, there exists an (r−
d)-round synchronous execution prefix S[1, 2, . . . , r − d] that is indistinguishable
from their views at the end of round r − d.

– (Non-triviality) The detector never returns NO during a synchronous execution.

The local detection property ensures that, if the detector returns YES, then there ex-
ists a synchronous execution consistent with the process’ view. On the other hand, the
global detection property ensures that, for processes that receive YES from the detector,
the (r − R)-round execution prefix was “synchronous enough”, i.e. there exists a syn-
chronous execution consistent with what these processes perceived during the prefix.
The non-triviality property ensures that there are no false positives.

4.1 Implementing an Asynchrony Detector

Next, we present an implementation of a 2-delay asynchrony detector in ES(N, t),
which we call AD(2). The pseudocode is presented in Figure 1.

The main idea behind the detector, implemented in the process procedure, is that
processes maintain a detailed view of the state of the system by aggregating all mes-
sages received in every round. For each round, each process maintains an Active set of
processes, i.e. processes that sent at least one message in the round; all other processes
are in the Failed set for that round (lines 2–4). Whenever a process receives a new mes-
sage, it merges the contents of the Active and Failed sets of the sender with its own
(lines 8–9). Asynchrony is detected by checking if there exists any process that is in
the Active set in some round r, while being in the Failed set in some previous round
r′ < r (lines 10–12). In the next round, each process sends its updated view of the
system together with a synch flag, which was set to true, if asynchrony was detected.

procedure detector()i1
msgi ← ⊥; synchi ← true; Activei ← []; Failed i ← [];2

for each round Rc do3
send(msgi)4
msgSeti ← receive()5
(synchi,msgi)← process(msgSeti, Rc)6
if synchi = true then output YES7
else output NO8

procedure process(msgSeti, r)i1
if synchi = true then2

Activei[Rc]← processes from which pi receives a message in round Rc3
Failedi[Rc]← processes from which pi did not receive a message in round Rc4

if there exists pj ∈ msgSeti with synchj = false then synchi ← false5
for every msgj ∈ msgSet i do6

for round r from 1 to Rc do7
Activei[r]← msgj .Activej [r] ∪Activei[r]8

Failed i[r]← msgj .Failed j [r] ∪ Failed i[r]9

for round r from 1 to Rc − 1 do10
for round k from r + 1 to Rc do11

if (Activei[k] ∩ Failed i[r] 6= ∅) then synchi ← false12

if synchi = true then13
msgi ← (synchi, (Activei[r])r∈[1,Rc], (Failedi[r])r∈[1,Rc])14

else msgi ← (synchi,⊥,⊥)15
return (synchi,msgi)16

Fig. 1. The AD(2) asynchrony detection protocol.

4.2 Proof of Correctness

In this section, we prove that the protocol presented in the Section 4.1 satisfies the
definition of an asynchrony detector. First, to see that the local detection condition is
satisfied, notice that the contents of the Active and Failed sets at each process p can be
used to construct a synchronous execution which is coherent with process p’s view.

In the following, we focus on the global detection property. We show that, for a
fixed round r > 0, given a set of processes P ⊆ Π that receive YES from AD(2) at
the end of round r + 2, there exists an r-round synchronous execution S[1, r] such that
the views of processes in P at the end of round r are consistent with S[1, r]. We begin
by proving that if two processes receive YES from the asynchronous detector in round
r + 2, then they must have received eachother’s round r + 1 messages, either directly,
or through a relay. Note that, because of the round structure, a process’s round r + 1
message only contains information that it has acquired up to round r.

In the following, we will use a superscript notation to denote the round at which the
local variables are seen. For example, Activer+2

q [r + 1] denotes the set Active[r + 2]
at process q, as seen from the end of round r + 2.

Lemma 1. Let p and q be two processes that receive YES from AD(2) at the end of
round r + 2. Then p ∈ Activer+2

q [r + 1] and q ∈ Activer+2
p [r + 1].

Proof. We prove that p ∈ Activer+2
q [r + 1]–the proof of the second statement is sym-

metric. Assume, for the sake of contradiction, that p /∈ Activer+2
q [r + 1]. Then, by

lines 8–9 of the process() procedure, none of the processes that send a message to q in
round r + 2 received a message from p in round r + 1. However, this set of processes
contains at least N − t > t elements, and therefore, in round r + 2, process p receives
a message from at least one process that did not receive a message from p in round
r + 1. Therefore p ∈ Activer+2

p [r + 2] ∩ Failedr+2
p [r + 1] (recall that p receives its

own message in every round). Following the process() procedure for p, we obtain that
synchp = false in round r+2, which means that process p receives NO from AD(2) in
round r + 2, contradiction.

Lemma 2. Let p and q be two processes in P . Then, for all rounds k < l ≤ r,
Activerp[l] ∩ Failedrq[k] = ∅, and Activerp[l] ∩ Failedrq[k] = ∅, where the Active
and Failed sets are seen from the end of round r.

Proof. We prove that, given r ≥ l > k, Activerp[l] ∩ Failedrq[k] = ∅. Assume, for the
sake of contradiction, that there exist rounds k < l ≤ r and a processor s such that
s ∈ Activerp[l] ∩ Failedrq[k]. Lemma 1 ensures that p and q communicate in round
r + 1, therefore it follows that s ∈ Failedr+2

p [k]. This means that s ∈ Activer+2
p [l] ∩

Failedr+2
p [k], for k < l, therefore p cannot receive YES in round r + 2, contradiction.

The next lemma provides a sufficient condition for a set of processes to share a
synchronous execution up to the end of some round R. The proof follows from the
observation that the required synchronous execution E can be constructed by exactly
following the contents of the Active and Failed sets by processes at every round in the
execution.

Lemma 3. Let E be an R-round execution in ES(N, t), and P be a set of processes in
Π such that, at the end of round R, the following two properties are satisfied:

1. For any p and q in P , and any round r ∈ {1, 2, . . . , R − 1}, ActiveRp [r + 1] ∩
FailedRq [r] = ∅.

2. |
⋂

p∈P Active
R
p [R]| ≥ N − t.

Then there exists a synchronous execution E which is indistinguishable from the views
of processes in P at the end of round R.

Finally, we prove that if a set of processes P receive YES fromAD(2) at the end of
some roundR+2, then there exists a synchronous execution consistent with their views
at the end of round R, for any R > 0, i.e. that AD(2) is indeed a 2-round asynchrony
detector. The proof follows from the previous results.

Lemma 4. Let R > 0 be a round and P be a set of processes that receive YES from
AD(2) at the end of round R+2. Then there exists a synchronous execution consistent
with their views at the end of round R.

5 Generating Indulgent Algorithms for Colorless Tasks

5.1 Task Definition

In the following, a task is a tuple (I,O, ∆), where I is the set of vectors of input values,
O is a set of vectors of output values, and ∆ is a total relation from I to O. A solution
to a task, given an input vector I , yields an output vector O ∈ O such that O ∈ ∆(I).

Intuitively, a colorless task is a terminating task in which any process can adopt any
input or output value of any other process, without violating the task specification, and
in which any (decided) output value is a (proposed) input value. We also assume that
the output values have to verify a predicate P , such as agreement or k-agreement. For
example, in the case of consensus, the predicate P states that all output values should
be equal. Let val(V) be the set of values in a vector V . We precisely define this family
of tasks as follows.

A colorless task satisfies the following properties: (1) Termination: every correct
process eventually outputs; (2) Validity: for every O ∈ ∆(I), val(O) ⊆ val(I); (3)
The Colorless property: If O ∈ ∆(I), then for every I ′ with val(I ′) ⊆ val(I) : I ′ ∈
I and ∆(I ′) ⊆ ∆(I). Also, for every O′ with val(O′) ⊆ val(O) : O′ ∈ O and
O′ ∈ ∆(I). Finally, we assume that the outputs satisfy a generic property (4) Output
Predicate: every O ∈ O satisfies a given predicate P . Consensus and k-set agreement
are canonical examples of colorless tasks.

5.2 Transformation Description

We present an emulation technique that generates an indulgent protocol in ES(N, t)
out of any protocol in S(N, t) solving a given colorless task T , at the cost of two com-
munication rounds. If the system is not synchronous, the generated protocol will run a
given backup protocol Backup which ensures safety, even in asynchronous executions.
For example, if an protocol solves synchronous consensus in t+ 1 rounds (i.e. it is op-
timal), then the resulting protocol will solve consensus in t+ 3 rounds if the system is
initially synchronous. Otherwise, the protocol reverts to a safe backup, e.g. Paxos [5],
or ASAP [6].

We fix a protocolA solving a colorless task in the synchronous model S(N, t). The
running time of the synchronous protocol is known to be of R rounds. In the first phase

of the transformation, each process p runs the AD(2) asynchrony detector in parallel
with the protocol A, as long as the detector returns a YES indication at every round.
Note that the protocol’s messages are included in the detector’s messages (or vice-
versa), preventing the possibility that the protocol encounters asynchronous message
deliveries without the detector noticing. If the detector returns NO during this phase, the
process stops running the synchronous protocol, and continues running only AD(2). If
the process receives YES at the end of round R + 2, then it returns the decision value
that A produced at the end of round R4.

On the other hand, if the process receives NO from AD(2) in round R + 2, i.e.
asynchrony was detected, then the process will run the second phase of the transforma-
tion. More precisely, in phase two, the process will run a backup agreement protocol
that tolerates periods of asynchrony (for example, the K4 protocol [10], if the task is
k-set agreement). The main question is how to initialize the backup protocol, given that
some of the processes may have already decided in phase one, without breaking the
properties of the task. We solve this problem as follows.

Let Supp (the support set) be the set of processes that received YES from AD(2)
in round R + 1 that process p receives messages from in round R + 2. There are two
cases. (1) If the set Supp is empty, then the process starts running the backup protocol
using its initial proposal value. (2) If the set Supp is non-empty, then the process obtains
a new proposal value as follows. It picks one process from Supp and adopts its state
at the end of round R − 1. Then, in round R, it simulates receiving the messages in⋂

j∈Supp msgSetR+1
j [R], where we maintain the notation used in Section 4. We will

show that in this case, the simulated protocol A will necessarily return a decision value
at the end of simulated round R. The process p then runs the backup protocol, using as
initial value the decision value resulting from the simulation of the first R rounds.

5.3 Proof of Correctness

We now prove that the resulting protocol verifies the task specification. The proofs of
termination, validity, and the colorless property follow from the properties of theA and
Backup protocols, therefore we will concentrate on proving that the resulting protocol
also satisfies the output predicate P .

Theorem 1 (Output Predicate). The indulgent transformation protocol satisfies the
output predicate P associated to the task T .

Assume for the sake of contradiction that there exists an execution in which the
output of the transformation breaks the output predicate P . If all process decisions are
made at the end of round R+ 2, then, by the global detection property of AD(2), there
exists a synchronous execution of A in which the same outputs are decided, which
break the predicate P , contradiction. If all decisions occur after round R + 2, first
notice that, by the validity and colorless properties, the inputs processes propose to the

4 Since AD(2) returns YES at process p at the end of round R + 2, it follows that it must
have returned YES at p at the end of round R as well. The local detection property of the
asynchrony detector implies that the protocolA has to return a decision value, since it executes
a synchronous execution.

Backup protocol are always valid inputs for the task. It follows that, since all decisions
are output by Backup, there exists an execution of the Backup protocol in which the
predicate P is broken, again a contradiction.

Therefore, at least one process outputs at the end of roundR+2, and some processes
decide at some later round. We prove the following claim.

Claim. If a process decides at the end of round R + 2, then (i) all correct processes
will have a non-empty support set Supp and (ii) there exists an R-round synchronous
execution consistent with the views that all correct processes adopt at the end of round
R+ 2.

Proof (Sketch). First, let d be a process that decides at the end of round R + 2. Then,
in round R + 2, process d received a message from at least N − t processes that got
YES from AD(2) at the end of round R + 1. Since N ≥ 2t + 1, it follows that every
process that has not crashed by the end of round R + 2 will have received at least one
message from a process that has received YES from AD(2) in round R + 1; therefore,
all non-crashed processes that get NO from AD(2) in round R+ 2 will execute case 2,
which ensures the first claim.

LetQ = {q1, . . . , q`} be the non-crashed processes at the end of roundR+2. By the
above claim, we know that these processes either decide or simulate an execution. We
prove that all views simulated in this round are consistent with a synchronous execution
up to the end of round R, in the sense of Lemma 3. To prove that the intersection of
their simulated views in round R contains at least (N − t) messages, notice that the
processes from which process d receives messages in round R + 2 are necessarily in
this intersection, since otherwise process d would receive NO in round R+ 2.

To prove the first condition of Lemma 3, note that process d’s view of round R, i.e.
the set msgSetR+2

d [R], contains all messages simulated as received in round R by the
processes that receive NO in round R+2. Since N − t > t, every process that receives
NO in round R+2 from the detector also receives a message supporting d’s decision in
round R+2; process d receives the same message and does not notice any asynchrony.

Therefore, we can apply Lemma 3 to obtain that there exists a synchronous execu-
tion of the protocol A in which the processes in Q obtain the same decision values as
the values obtained through the simulation or decision at the end of round R+ 2.

Returning to the proof of the output predicate, recall that there exists at least pro-
cess d which outputs at the end of round R + 2. From the above Claim, it follows
that all non-crashed processes simulate synchronous views of the first R rounds. There-
fore all non-crashed processes will receive an output from the synchronous protocol
A. Moreover, these synchronous views of processes are consistent with a synchronous
execution, therefore the set of outputs received by non-crashed processes verifies the
predicate P . Hence all the inputs that the processes propose to the Backup protocol
verify the predicate P . Since Backup respects validity, it follows that the outputs of
Backup will also verify the predicate P .

6 A Protocol for Strong Indulgent Renaming
6.1 Protocol Description
In this section, we present an emulation technique that transforms any synchronous re-
naming protocol into an indulgent renaming protocol. For simplicity, we will assume

that the synchronous renaming protocol is the one by Herlihy et al. [8], which is time-
optimal, terminating in dlogNe+1 synchronous rounds. The resulting indulgent proto-
col will rename in N names using dlogNe+ 3 rounds of communication if the system
is initially synchronous, and will eventually rename into N + t names if the system is
asynchronous, by safely reverting to a backup constituted by the asynchronous renam-
ing algorithm by Attiya et al. [7]. Again, the protocol is structured into two phases.
First Phase. During the first dlogNe+1 rounds, processes run theAD(2) asynchrony
detector in parallel with the synchronous renaming algorithm. Note that the protocol’s
messages are included in the detector’s messages. If the detector returns NO at one of
these rounds, then the process stops running the synchronous algorithm, and continues
only with the detector. If at the end of round [logN]+1, the process receives YES from
AD(2), then it also receives a name namei as the decision value of the synchronous
protocol.
Second Phase. At the end of round [logN] + 1, the processes start the asynchronous
renaming algorithm of [7]. More precisely, each process builds a vector V with a single
entry, which contains the tuple 〈vi, namei, Ji, bi, ri〉, where vi is the processes’ initial
value. The entry namei is the proposed name, which is either the name returned by the
synchronous renaming algorithm, if the process received YES from the detector, or ⊥,
otherwise. The entry Ji counts the number of times the process proposed a name–it is 1
if the process has received YES from the detector, and 0 otherwise; bi is the decision bit,
which is initially 0. Finally, ri is the round number5 when the entry was last updated,
which is in this case dlog ne+ 1.

The processes broadcast their vectors V for the next two rounds, while continuing
to run the asynchrony detector in parallel. The contents of the vector V are updated at
every round, as follows: if a vector V ′ containing new entries is received, the process
adds all the new entries to its vector; if there are conflicting entries corresponding to the
same process, the tie is broken using the round number ri.

If, at the end of round dlogNe+3 the process receives YES from the detector, then
it decides on namei. Otherwise, it continues runnning the AttiyaRenaming algorithm
until decision is possible.

6.2 Proof of Correctness

The first step in the proof of correctness of the transformation provides some properties
of the asynchronous renaming algorithm of [7]. More precisely, the first Lemma states
that the asynchronous renaming algorithm remains correct even though processes pro-
pose names initially, that is at the beginning of round dlogNe + 2. The proof follows
from an examination of the protocol and proofs from [7].

Lemma 5. The asynchronous renaming protocol of [7] ensures termination, name unique-
ness, and a name space bound of N + t, even if processes propose names at the begin-
ning of the first round.

The previous Lemma ensures that the transformation guarantees termination, i.e.
that every correct process eventually returns a name. The non-triviality property of the

5 This entry in the vector is implied in the original version of the algorithm [7].

asynchrony detector ensures that the resulting algorithm will terminate in dlogNe + 3
rounds in any synchronous run. In the following, we will concentrate on the uniqueness
of the names and on the bounds on the resulting namespace. We start by proving that
the protocol does not generate duplicate names.

Lemma 6 (Uniqueness). Given any two names ni, nj returned by processes in an ex-
ecution, we have that ni 6= nj .

Proof (Sketch). Assume for the sake of contradiction that there exists a run in which
two processes pi, pj decide on the same name n0. First, we consider the case in which
both decisions occurred at round dlogNe + 3, the first round at with a process can
decide using our emulation. Notice that, if a decision is made, the processes necessar-
ily decide on the decision value of the simulated synchronous protocol6. By the global
detection property of AD(2) it then follows that there exists a synchronous execution
of the synchronous renaming protocol in which two distinct processes return the same
value, contradicting the correctness of the protocol. Similarly, we can show that if both
decisions occur after round dlogNe+ 3, we can reduce the correctness of the transfor-
mation to the correctness of the asynchronous protocol.

Therefore, the remaining case is that in which one of the decisions occurs at round
dlogNe+ 3, and the other decision occurs at a later round, i.e. it is a decision made by
the asynchronous renaming protocol. In this case, let pi be the process that decides on
n0 at the end of round dlogNe+3. This implies that process pi received YES at the end
of round dlogNe + 3 from AD(2). Therefore, since pi sees a synchronous view, there
exists a set S of at least N − t processes that received pi’s message reserving name n0
in round dlogNe+2. It then follows that each non-crashed process receives a message
from a process in the set S in round dlogNe + 3. By the structure of the protocol, we
obtain that each process has the entry 〈vi, n0, 1, 0, dlogNe+1〉 in their V vector at the
end of round dlogNe + 3. It follows from the structure of the asynchronous protocol
that no process other than pi will ever decide on the name n0 at any later round, which
concludes the proof of the Lemma.

Finally, we prove that the transformation ensures the following guarantees on the
size of the namespace.

Lemma 7 (Namespace Size). The transformation ensures the following properties: (1)
In synchronous executions, the resulting algorithm will rename in a namespace of at
mostN names. (2) In any execution, the resulting algorithm will rename in a namespace
of at most N + t names.

Proof (Sketch). For the proof of the first property, notice that, in a synchronous exe-
cution, any output combination for the transformation is an output combination for the
synchronous renaming protocol. For the second property, let ` ≥ 0 be the number of
names decided on at the end of round dlogNe+3 in a run of the protocol. These names
are clearly between 1 and N . Lemma 6 guarantees that none of these names is decided
on in the rest of the execution. On the other hand, Lemma 5 and the namespace bound
of N + t for the asynchronous protocol ensure that the asynchronous protocol decides
exclusively on names between 1 and N + t, which concludes the proof of the claim.

6 A simple analysis of the asynchronous renaming protocol shows that a process cannot decide
after two rounds of communication, unless it had already proposed a value at the beginning of
the first round.

7 Conclusions and Future Work

In this paper, we have introduced a general transformation technique from synchronous
algorithms to indulgent algorithms, and applied it to obtain indulgent solutions for a
large class of distributed tasks, including consensus, set agreement and renaming. Our
results suggest that, even though it is generally hard to design asynchronous algorithms
in fault-prone systems, one can obtain efficient algorithms that tolerate asynchronous
executions starting from synchronous algorithms.

In terms of future work, we first envision generalizing our technique to generate
algorithms that also work in a window of synchrony, and investigating its limitations
in terms of time and communication complexity. Another interesting research direction
would be to analyze if similar techniques exist in the case of Byzantine failures–in
particular, if, starting from a synchronous fault-tolerant algorithm, one can obtain a
Byzantine fault-tolerant algorithm, tolerating asynchronous executions.

8 Acknowledgements

The authors would like to thank Prof. Hagit Attiya and Nikola Knežević for their help
on previous drafts of this paper, and the anonymous reviewers for their useful feedback.

References
1. R. Guerraoui, “Indulgent algorithms,” in PODC’ 2000, pp. 289–297, ACM, July 2000.
2. C. Dwork, N. A. Lynch, and L. Stockmeyer, “Consensus in the presence of partial syn-

chrony,” J. ACM, vol. 35, pp. 288–323, Apr. 1988.
3. P. Dutta and R. Guerraoui, “The inherent price of indulgence.,” in PODC ’02: Proceedings

of the annual ACM symposium on Principles of distributed computing, pp. 88–97, 2002.
4. L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103, 2006.
5. L. Lamport, “Generalized consensus and paxos,” Microsoft Research Technical Report MSR-

TR-2005-33, March 2005.
6. D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers, “How to solve consensus in the smallest

window of synchrony,” in DISC, pp. 32–46, 2008.
7. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, “Renaming in an asynchronous

environment,” Journal of the ACM, vol. 37, no. 3, pp. 524–548, 1990.
8. S. Chaudhuri, M. Herlihy, and M. R. Tuttle, “Wait-free implementations in message-passing

systems,” Theor. Comput. Sci., vol. 220, no. 1, pp. 211–245, 1999.
9. P. Dutta and R. Guerraoui, “The inherent price of indulgence,” Distributed Computing,

vol. 18, no. 1, pp. 85–98, 2005.
10. D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers, “Of choices, failures and asynchrony:

The many faces of set agreement,” in ISAAC 2009.
11. T. D. Chandra and S. Toueg, “Unreliable failure detectors for asynchronous systems (prelim-

inary version),” in ACM Symposium on Principles of Distributed Computing, pp. 325–340,
Aug. 1991.

12. E. Gafni, “Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony,” in Proceedings of the 17th Symposium on Principles of Distributed Comput-
ing, 1998.

13. P. Dutta, R. Guerraoui, and I. Keidar, “The overhead of consensus failure recovery,” Dis-
tributed Computing, vol. 19, no. 5-6, pp. 373–386, 2007.

14. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann, “The disagreement power
of an adversary,” in DISC, pp. 8–21, 2009.

